The compulsive-like aspect of the head dipping emission in rats with chronic electrolytic lesion in the area of the median raphe nucleus.
نویسندگان
چکیده
Head dipping (HD) is a behavioral pattern considered to have a risk assessment or an exploratory role and is used as a complementary parameter to evaluate anxiety in experimental animals. Since rats with electrolytic lesion in the area of the median raphe nucleus displayed high frequencies of HD in a previous study, the present investigation was undertaken to confirm this observation and to determine its anxiety-related origin. HD episodes were counted in adult male Wistar rats (270-350 g) with electrolytic lesion (N = 11) and sham-lesioned controls (N = 12). When HD was measured for 60 min on an elevated open platform, lesioned rats emitted 13 times more HD than controls (264.7 +/- 93.3 vs 20.3 +/- 7.6 episodes), with the difference being statistically significant (P < 0.05). HD counts during 10-min sessions held 7, 14, 21, 27, and 63 days after lesion showed significantly higher means (range: 28.14 +/- 5.38 to 62.85 +/- 9.48) compared to sham-lesioned controls (range: 7.37 +/- 1.13 to 8.5 +/- 1.45). Normal rats stepped down into their home cages when the vertical distance between them and the cage was short (16 cm), and the step-down latencies increased with increasing depths (36.7 +/- 7.92 to 185.87 +/- 35.44 s). Lesioned rats showed a similar behavior when facing the shortest depth, but had a significantly increased number (23.28 +/- 2.35 episodes) and latency (300 +/- 0.00 s) of HD compared to normal rats (9.25 +/- 1.37 episodes and 185.87 +/- 35.44 s) when facing the greatest depth (30 cm). This suggests that HD may be a depth-measuring behavior related to risk assessment.
منابع مشابه
Analgesic effect of morphine microinjected into the nucleus raphe magnus after electrolytic lesion of nucleus cuneiformis in tail-flick and formalin tests in rat
Introduction: The antinociceptive effect of morphine is, in part, mediated through the activation of a descending pathway. One of the major components of this pathway is the nucleus raphe magnus (NRM). Our previous study demonstrated the involvement of NRM in the analgesic effect of morphine microinjected into the nucleus cuneiformis (NCF) in a descending manner. The aim of the current study...
متن کاملEffects of Electrolytic Lesions of the Ventrolateral Periaqueductal Gray and Nucleus Raphe Magnus on Morphine – Induced Antinociception in the Nucleus Cuneiformi
A B S T R A C TIntroduction: The nucleus cuneiformis (NCF) and ventrolateral periaqueductal gray (vlPAG), two adjacent areas, mediate the central pain modulation and project to the nucleus raphe magnus (NRM). Methods: This study examined whether the antinociceptive effect of morphine microinjected into the NCF is influenced by inactivation of vlPAG and NRM in rats. Animals were bilaterally micr...
متن کاملThe effect of reversible inactivation of raphe nuclus on learning and memory in rats
The role of raphe nucleus (R.N) and serotonin in some behaviors such as sleep, cognition, mood, and memory has previously been reported. The median raphe (MR) nucleus is a major serotonin-containing cell group within the brainstem and is one of the main sources of projections to the septum and hippocampus. The hippocampus is widely believed to be essential for context-conditioning learning. Mor...
متن کاملThe effect of blocking of medial raphe nucleus Ca+2-channels on pain in male rats using formalin test
Midbrain periaqueductal gray mater area (PAG) receives some afferents from anterolateral system, frontal cortex, and hypothalamus that inhibit pain through its descending pathway that synapses medial raphe nuclus (mrph) and finally terminates on spinal cord enkephalinergic interneurons in layers II and III. In the present study, the role of Ca+2–channels located on medial raphe nucleus neurons ...
متن کاملThe effect of blocking of medial raphe nucleus Ca+2-channels on pain in male rats using formalin test
Midbrain periaqueductal gray mater area (PAG) receives some afferents from anterolateral system, frontal cortex, and hypothalamus that inhibit pain through its descending pathway that synapses medial raphe nuclus (mrph) and finally terminates on spinal cord enkephalinergic interneurons in layers II and III. In the present study, the role of Ca+2–channels located on medial raphe nucleus neurons ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas
دوره 37 2 شماره
صفحات -
تاریخ انتشار 2004